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Abstract

A robust finite-difference approach for solving physically distinct cross-disciplinary problems such as membrane-
mediated protein–protein interactions and heat and magnetic field diffusion in plasmas is described for rectangular
grids. Mathematical models representing these physical phenomena are fourth- and second-order partial differential
equations with variable coefficients. The finite-difference coupled harmonic oscillators technique was developed to treat
arbitrary aggregates of inclusions in membranes automatically accounting for their non-pairwise interactions. The
method was applied to study the stabilization of ion channels in a cluster due to membrane-mediated interactions
and to examine the effects of anisotropic membrane slope relaxation on the elastic free energy. To obtain contributions
from heat and magnetic field diffusion, the splitting method for the physical processes has been used in the numerical
solution of resistive magnetohydrodynamic equations. The fully implicit scheme is outlined, tested and applied to prob-
lems of the diffusive redistribution of magnetic field and heat in the plasma.
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1. Introduction

Many scientific problems require simulating continuous physical systems, such as those involving fluids,
plasma flows, lipid membranes and liquid crystals. Even though these are many particle systems, at the
macroscopic level they behave as continuous entities in a wave-like or fluid fashion. Mathematical models
representing continuous physical phenomena are partial differential equations (PDEs). Unfortunately most
PDEs representing realistic problems (rather than idealizations) are too complex to be solved analytically.
Therefore, various classes of numerical methods have been developed to computationally solve PDEs [1].
Numerical solution involves two tasks: (1) choosing a discretization scheme to transform the PDE into a
discrete problem that approximates it and (2) selecting a solution method for the discretized problem. Dis-
cretization procedures use either finite difference (FD) or finite-element methods [2,3] resulting in a large,
sparse system of linear algebraic equations. The number of unknowns may vary from hundreds to millions;
their determination is the most time consuming step. Our focus is on robust FD techniques for solving sec-
ond- and fourth-order PDEs with variable coefficients. FD algorithms have the advantage of being simply
formulated for two-dimensional (2D) problems, which implies that they can be quickly adapted to realistic
problems that are of both theoretical and practical interest in physics and chemistry.

Computationally, the physical processes may be treated as boundary value and initial value problems.
Steady-state processes, which are time independent, can be described by elliptic PDEs [4]. Elliptic equations
model the behavior of scalar quantities, such as temperature, gravitational potential, electromagnetic fields,
membrane distortion fields, etc. These lead to boundary value problems. The PDEs must be satisfied at all
points in the interior of the computational domain with appropriate boundary conditions specified on all
boundaries within this domain. The goal is to determine the functions at all interior points. Initial value
problems characterize dissipative physical processes, such as heat or magnetic field diffusion in a plasma,
which are evolving toward a steady state. Such phenomena are described by parabolic PDEs [5]. For all
initial value problems with constant boundary constraints, the solutions decay from an initial state to a
non-varying steady state. Thus, the steady-state limit of parabolic time-dependent problems are solutions
to boundary value problems. Their transient behavior is smooth and bounded and the solution does not
develop local or global maxima that are outside the range of the initial data. Therefore, their solution
can be �driven� to the steady state using implicit time-stepping techniques [6]. The time step is represented
as an adjustable relaxation parameter. If it is chosen as large as possible, then small scale evolution details
are inessential. Put differently, averaging of small scale changes in temperature or magnetic field is per-
formed implicitly during the large time step instead of after a huge sequence of small explicit time steps.

Our focus is on membrane-mediated protein–protein interactions [7] and problems of heat and magnetic
field diffusion in plasmas [8]. These are the examples of physically distinct cross-disciplinary problems. Elastic
membrane deformation due to embedded proteins leading to long-range membrane-mediated interactions
can be described by a fourth-order elliptic Euler–Lagrange equation [7]. We developed a finite-difference
coupled harmonic oscillators (FD-CHO) approach to treat this problem for arbitrary protein aggregates.
Understanding resistive magnetohydrodynamic (MHD) plasma phenomena such as heat and magnetic field
diffusion is of practical importance in dense plasma focus (DPF) and fusion plasmas. DPF devices produce
the most flexible and advanced plasmas, sources of intense radiation and of charged particles for materials,
medical and environmental applications. Using a splitting method for the physical processes [9–11], we
decouple the effects of heat and magnetic field diffusion from the effects of plasma hydrodynamics within
a moving plasma. Heat and magnetic field diffusion in plasmas is described by second-order parabolic equa-
tions. We employ a fully implicit (backward time) scheme [6] to approximate these equations. Finally, both
the FD-CHO method for membrane-mediated protein–protein interactions and the fully implicit method
for time-dependent heat and magnetic field diffusion in plasmas yield similar systems of linear algebraic
equations with a sparse matrix. The diffusion problems require a system of linear equations to be solved
at each time step.
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2. Physical model of membrane deformation

A lipid bilayer is a bimolecular sheet embedded between aqueous phases, with its hydrophilic heads
facing the water and hydrophobic chains in the interior. Models based on continuum elastic theories
treat the lipid bilayer as a stratum of a smectic liquid crystal. Biological membranes contain a large
number of mobile inclusions such as embedded proteins. Besides interacting directly via electrostatic
or van der Waals forces, inclusions are also coupled indirectly via the elastic perturbation of the membrane.
The hydrophobic length of an inclusion generally does not equal the thickness of the inclusion-free
membrane; thus the bilayer thickness at the protein/bilayer boundary must adjust itself. This inclusion
induced membrane deformation can be felt by a nearby inclusion, thus generating an effective mem-
brane-mediated force. Earlier studies of membrane-mediated protein–protein interactions were based
on mean-field theories [12–16]. In these, a Landau free energy [17] is expanded in an order parameter
(variation of membrane thickness) and its gradient, which are both directly related to membrane fluc-
tuations. These earlier studies were limited by the approximations needed to formulate appropriate ana-
lytical models. To describe protein clusters, an analytical expression for the total free energy was
derived, based on a pairwise superposition approximation [16]. An approach using membrane elasticity
theory to model membrane–inclusion interactions induced by hydrophobic mismatch was described by
Huang [18]. It considers two contributions to the free energy, stretching/compression and bending (see
also [19,20]), and predicts short-range membrane perturbation near a membrane inclusion, decaying
with a characteristic length of �10–20 Å. More recent work [21] treats the proteins on a hexagonal lat-
tice associating a 2D Wigner–Seitz cell with each inclusion, assuming the membrane perturbation
around each inclusion is radially symmetric. It was easier to compute the energy of an array of inclu-
sions than to exactly calculate the interaction between an inclusion pair and the total perturbation free
energy of the membrane was treated as a sum of single inclusion contributions [22]. This hexagonal
approximation is reasonable for low inclusions densities, i.e. for well-separated inclusions. Recently,
using a multipole expansion of a mean curvature field, it was shown that interaction involving three
or more inclusions is not pairwise additive, i.e. the total energy of a protein ensemble is not a sum
of two-body terms [23]. This has important implications in establishing the existence of stable protein
aggregates of five or more inclusions. To treat many-body effects, a numerical method was devised for
exactly solving the Euler–Lagrange equation by FD [20]. However, since finer grids required excessively
long computation times, the mesh was coarse, with spacings of 3.6 Å, and inadequate to properly de-
scribe membrane distortion near inclusion boundaries. Thus, the Euler–Lagrange equation was solved
assuming the membrane distortion field near inclusions was cylindrically symmetric. While adequate
for regular protein aggregates and lattice arrays, it is less appropriate for the protein clusters of general
geometry observed in Monte Carlo simulation [20]. Here, we present the FD-CHO technique, with
which it is possible to exactly treat many-body problems with no unreasonable assumptions. It is appli-
cable to general inclusion configurations and clusters of arbitrary size. A fine FD mesh spacing (�0.4–
0.5 Å) can be used; thus membrane distortion fields near inclusions need not be cylindrically symmetric.
A preliminary description was given in a recent review [7] and it has been applied to study channel sta-
bilization [24] and anisotropic membrane slope relaxation [25] due to membrane-mediated elastic
interactions.

Because the lipophilic exteriors of inclusions embedded in membranes generally differ in length from the
surrounding hydrophobic region of the bilayer, the membrane deforms in accommodation (Fig. 1). We con-
sider the simplest case, N embedded rigid cylindrical inclusions, denote the membrane�s displacement from
its flat state as u(x,y) and assume that the membrane is only slightly perturbed, in which case a quadratic
approximation is valid and the free energy of the membrane is a harmonic functional of u(x,y) and its deriv-
atives [18,20]. Deformation energetics depends on the material properties of the membrane. The macro-
scopic coefficients needed to describe the physical problem are B, the elastic stretching modulus (due to



Fig. 1. Schematic illustration of a deformed bilayer matching the hydrophobic region of an inclusion. The bilayer deformation profile
is shown for the boundary condition s = smin. h0 denotes the equilibrium thickness of the unperturbed bilayer, u0 the deformation depth
of the monolayer, d the hydrophobic length of inclusion, r0 the radius of inclusion and s the contact slope at inclusion–bilayer
boundary.
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membrane thickness variation), K, the elastic bending modulus (due to the tilt of phospholipid chains) and
c, the surface tension coefficient. In what follows we neglect surface tension, an justifiable approximation
for solvent-free membranes [19,20]. In the harmonic approximation, the inclusion induced deformation free
energy of the membrane is a surface integral
F ¼
Z Z

S
bðx; yÞðDuðx; yÞÞ2 þ aðx; yÞu2ðx; yÞ
h i

dx dy; ð1Þ
where a(x,y) = 2B(x,y)/h0, b(x,y) = K(x,y)h0/2, D = $2 = o2/ox2 + o2/oy2, h0 is the thickness of the unper-
turbed membrane and, near inclusions, the membrane elastic constants, B(x,y) and K(x,y), may differ from
their unperturbed bulk values [26]. At thermodynamic equilibrium, the free energy F is minimized. Apply-
ing the variational principle and minimizing the functional F with respect to u(x,y) [27], yields the Euler–
Lagrange equation
Dðbðx; yÞDuðx; yÞÞ þ aðx; yÞuðx; yÞ ¼ 0. ð2Þ

This is a fourth-order, linear, elliptic partial differential equation with the non-uniform coefficients describ-
ing the deformation surface u(x,y) that minimizes F. Solving (2) with appropriate boundary conditions we
find a 2D displacement field u(x,y) and then determine the minimum free energy F using (1). Eq. (2) is a
fourth-order differential equation, which requires four boundary conditions. At the external boundary of
a computational domain both u(x,y) and $u(x,y) vanish, i.e. the membrane perturbation approaches zero.
It is associated with areas ‘‘infinitely distant’’ from a given cluster of N inclusions, leading to two conditions
at the external membrane boundary



G.V. Miloshevsky et al. / Journal of Computational Physics 212 (2006) 25–51 29
uðx; yÞj1 ¼ 0; ruðx; yÞj1 ¼ 0. ð3Þ

The other two conditions are formulated on the cylindrical boundary Cj of each of the j inclusions (Fig. 1)
as
uðx; yÞjCj
¼ u0j; ruðx; yÞjCj

¼ sj; ð4Þ
where u0j = (h0 � dj)/2 is the displacement of the membrane from its unperturbed state at the contact sur-
face of the membrane and the jth inclusion, dj is the corresponding hydrophobic length and sj is the cor-
responding contact slope. We assume strong hydrophobic coupling between the hydrophobic region of the
bilayer and the hydrophobic exterior surface of the embedded inclusions [21]. The choice of the contact
slope boundary condition is still a subject of controversy. The variation of gramicidin A (gA) channel life-
time as a function of bilayer thickness was used [20,28] to determine the contact slope. The so-called ‘‘null
constraint’’ boundary condition, sj = 0, accounts for the effect of membrane thickness on gA single channel
lifetimes [20]. However, this ‘‘null constraint’’ restricts the contact slope, only possible if a boundary energy
term, of unspecified physical origin, is postulated. A more physically attractive development presumes that
this slope adjusts itself (the ‘‘relaxed slope’’) to minimize the free energy of the bilayer deformation [19].
However, the ‘‘relaxed slope’’ boundary condition sj = smin yields much lower deformation free energies
than the ‘‘null constraint’’ condition, with results that are inconsistent with the gA lifetime measurements.
Recent theoretical work [26] shows this discrepancy can be eliminated by considering inclusion-induced lo-
cal membrane rigidity (perturbation of membrane elastic moduli) and further, that this can be identified
with the boundary energy introduced to justify the ‘‘null constraint’’ [25]. The appropriate choice of the
contact slope is still an open question since the bilayer/inclusion interface is inadequately characterized
experimentally [29].

The solution of (2) with the boundary conditions (3) and (4) describes the equilibrium state of the mem-
brane surface deformed in response to embedded inclusions and (1) determines the bilayer�s distortion free
energy. For a single inclusion, and assuming radial symmetry, analytical expressions for both the deforma-
tion profile and deformation energy can be derived [7]. However, with two or more inclusions, the surface
shape and the total deformation energy cannot be found analytically. To solve (2) for arbitrary protein
aggregates, numerical methods are the only alternative. However, numerical solutions require a discrete
computational domain and governing equations reduced to their FD equivalents.
3. Physical model of heat and magnetic field diffusion in plasmas

Plasmas play a key role in controlled fusion as well as in fields such as material processing, particle accel-
erators and astrophysics. A standard way to study their dynamics is to treat the plasma as a magnetized
fluid [30]. In such fluids both the velocity and magnetic fields are physically coupled, i.e. a perturbation
of the velocity field induces a magnetic response and a perturbation of the magnetic field results in a change
in the motion of the plasma. To simulate plasma behavior a system of very complicated MHD equations,
comprising a combination of the Euler equations of gas dynamics and the Maxwell equations of electro-
magnetism and their associated boundary conditions, is formulated to describe both the plasma and the
magnetic field. The unsteady system of resistive single fluid non-relativistic MHD is given by
otU þr � F ¼ Q; ð5Þ
where U is the state vector (plasma density, momentum, total energy density and magnetic field), F is the
corresponding flux vector, Q is the source term describing dissipation (heat conduction, magnetic diffusion,
viscosity, etc.) and ot is the partial differential operator with respect to time t. Eq. (5) describe the time
dependence of physical quantities such as plasma density, velocity, temperature and magnetic field. The
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ideal MHD equations (Q = 0) are hyperbolic, but including resistivity changes the mathematical form to
mixed hyperbolic–parabolic.

We wish to extend the range of validity of existing ideal MHD models to address realistic plasma con-
ditions. The solution of general MHD problems with arbitrary geometries and more complicated processes
involving other physical phenomena such as thermal conduction, radiative transfer, magnetic field diffusion
and changes of state is of great practical importance. Formation of the plasma focus in the DPF device
[31,32] exemplifies problems involving coupled physical processes with multiple scales where the equations
for the distinct physical processes are best solved by different numerical techniques. A powerful approach to
such problems is a splitting method [9–11], which involves decoupling the full model into a separate com-
ponent for each process, employing specialized numerical methods to solve each component, and coupling
the resulting solutions. Thus, the MHD equations are solved as a decoupled set of hyperbolic and parabolic
equations. At each time step the MHD problem (5) is split into decoupled subproblems (which may involve
different meshes and solution methods) corresponding to the different physical processes (e.g. plasma flow,
transport, diffusion, reactions, etc.) that occur within the computational domain or in individual regions.
The various processes are treated sequentially and MHD physics updated after each separate contribution.
Therefore, numerical algorithms constructed according to the principle of splitting by physical process are
strictly constrained by their order of execution. The splitting error consists of a physical splitting error that
would exist even if were the subproblems solved exactly (indicative of the way that subproblems are linked),
and a numerical splitting error, related to approximating each subproblem.

The splitting algorithm has been used in our numerical solution of the MHD equations (5) to separate
contributions from heat and magnetic field diffusion. These processes redistribute the internal energy and
magnetic flux in the plasma. The resulting enthalpy conservation and magnetic field diffusion equations,
obtained by splitting the MHD system (5) according to the nature of the physical processes, can be written
in 2D cylindrical coordinates as
oqH
ot

¼ 1

r
o

or
rK

oT
or

� �
þ o

oz
K
oT
oz

� �
ð6Þ
and
oB
ot

¼ c2

4pl
o

or
g
r
orB
or

� �
þ c2

4pl
o

oz
g
oB
oz

� �
; ð7Þ
where r and z are axisymmetric coordinates, q the plasma density, H the specific enthalpy, K the local ther-
mal conductivity of the plasma, T the plasma temperature, B = Bu the azimuthal magnetic field, c the speed
of light, l the magnetic permeability and g the magnetic diffusivity. We assume axial symmetry about the
z-axis, i.e. solutions are u-independent. The current through the plasma is constrained to the (z � r) plane.
The magnetic field has an azimuthal component Bu (the self-induced magnetic field) [33]. The enthalpy
equation (6) is parabolic, and describes the spatial and time variation of heat flow as well as diffusion.
The relationship between the specific enthalpy and temperature is H = cpT, where cp is the constant pres-
sure heat capacity. Eq. (7) describes the resistive diffusion of the magnetic field through the plasma. Under
the influence of finite resistivity the magnetic field diffuses across the plasma and field inhomogeneities are
smoothed out.

For illustration consider the schematic plasma chamber of Fig. 2(a). Our aim is to describe the boundary
conditions. There are four boundaries: the left (r = 0), right (r = a), bottom (z = 0), and top (z = b). At the
outer chamber boundary (r = a), the computational domain contains an assembly of trapezium-shaped
cathodes and anodes. Treating the chamber as cylindrically symmetric, we choose ABCDEFGHKLMN
as the outer calculation boundary C. Fine details of the computational grid and our approximation of
the ABC cathode boundary are illustrated in Fig. 2(b). Before solving (6) and (7), both initial and boundary
conditions must be specified. Initial conditions are the initial temperature and magnetic field values
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G.V. Miloshevsky et al. / Journal of Computational Physics 212 (2006) 25–51 31
assigned to interior points of the computational domain. The boundary conditions can take many forms.
We use Neumann boundary conditions [6], specifying the normal temperature gradients, $T = 0, on the
computational domain boundaries. The boundary conditions for B are more complex. We require the mag-
netic field to be sufficiently well behaved at the symmetry axis (r = 0) that the differential operators in (7)
are non-singular. Axial symmetry implies that the azimuthal magnetic field vanishes, B = 0 at r = 0, with
oB+/or = o B�/or at r ! 0, where B+ and B� are the azimuthal magnetic fields on the left and right sides of
the symmetry axis. At the outer boundary C, the boundary conditions are motivated by the physics. We use
one of the following sets of constraints: current flow, B = 2I/rc; Neumann boundary conditions, orB/
or = 0 and oB/oz = 0; or conducting wall, B = 0.

To solve parabolic equations like (6) and (7), we use the fully implicit scheme [6] which generates a se-
quence of elliptic problems in the limit of large time steps. During each large time step the implicit scheme
drives small scale changes of the temperature or magnetic field to equilibrium states satisfying (6) and (7)
with the left-hand side set to zero. This time step is viewed as the ‘‘relaxation time’’ to the steady state. At a
given time step the resulting equations are elliptic or Poisson�s equations for T and B. Space variables are
discretized just as in steady state heat and magnetic field diffusion problems. The solution from the previous
time step provides an initial guess for the new one. Thus, for the large time steps allowed in the fully implicit
scheme, the parabolic equations (6) and (7) can be reduced to the solution of elliptic equations for each time
slice of the spacetime. In summary, the main advantage of the fully implicit scheme is that we have accurate
error control in the time step selection process allowing step sizes to automatically adjust to the problem
physics while maintaining accuracy.
4. Finite-difference approximations

Suppose that the space continuum is replaced by a discrete spatial mesh (Fig. 3). We seek FD approx-
imations to the nth-order derivative onf(x)/oxn on the q-point stencil, i.e. the function is expanded over q
discrete nodes with an error of order o = q � n, which can be specified a priori. The fewest discrete nodes
q needed to approximate the nth-order derivative is n + 1. More nodes provide more accurate FD approx-
imations. For any node, the stencil defines node connectivity, i.e. which other nodes determine the
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Fig. 3. Grid spacing for FD approximations of partial derivatives. The grid points are denoted by the solid circles. The derivative is
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illustrated; ak are template coefficients.
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derivative. Let Dxi
n;o denote the FD approximation for the derivative n with truncation error o. The super-

script xi denotes the node xi, where the derivative is evaluated (Fig. 3). We approximate the nth-order deriv-
ative over q nodes as a linear combination
onf ðxÞ
oxn

� Dxi
n;of ðxÞ ¼

Xke
k¼ks

nkfk; ð8Þ
where nks ; . . . ; nke are unknowns and, for a q-point stencil, k extends from ks to ke, i.e. q = ke � ks + 1. The
vector Kxi

n;o ¼ ðnks ; . . . ; nk; . . . ; nkeÞ is the approximation template. Depending on the number of stencil nodes
preceding or following xi the FD approximation is characterized as backward, central or forward (Fig. 3).
As q = ke � ks + 1, setting ks = 0 and ke = q � 1 leads to a forward difference and setting ks = �(q � 1) and
ke = 0 leads to a backward difference approximation. Setting ks = �º(q � 1)/2ß and ke = º(q � 1)/2ß pro-
duces a central difference approximation. Here brackets mean a truncation to integers, i.e. any remainder
is dropped. The Taylor series expansion for each node k about grid point xi is
fk ¼ fi þ Dxk
ofi
ox

þ 1

2
Dx2k

o
2fi
ox2

þ 1

6
Dx3k

o
3fi
ox3

þ � � � ; ð9Þ
where Dxk = xk � xi is the spacing between nodes xk and xi and fi is a function evaluated at xi. Substituting
(9) into (8) and gathering terms yields
Xke
k¼ks

nkfk ¼
Xke
k¼ks

nkfi þ
Xke
k¼ks

nkDxk
ofi
ox

þ
Xke
k¼ks

nk
1

2
Dx2k

o2fi
ox2

þ � � � ð10Þ
Introducing
Am ¼
Xke
k¼ks

nk
1

m!
Dxmk ð11Þ
for m = 0, . . .,q � 1 we find (10)
Xke
k¼ks

nkfi þ
Xke
k¼ks

nkDxk
ofi
ox

þ � � � þ
Xke
k¼ks

nk
1

ðq� 1Þ!Dx
q�1
k

oq�1fi
oxq�1

¼ A0fi þ A1

ofi
ox

þ � � � þ Aq�1

oq�1fi
oxq�1

. ð12Þ
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Eq. (12) is true if we set
Fig. 4.
corresp
derivat
mixed
Am ¼
Xke
k¼ks

nk
1

m!
Dxmk ¼

1; m ¼ n

0; m 6¼ n

� �
;

which yields q linear equations in ke � ks + 1 unknowns. Multiplying (12) by m! the equations for nk can be
formulated as
1 1 1 � � � 1
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..

.
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2
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3
77777775
. ð13Þ
As long as the determinant of the coefficient matrix in (13) is non-zero, this system of linear equations deter-
mines the nk required in Eq. (8).

For multi-variant functions, mixed partial derivatives can be constructed as a tensor product of templates
for functions of one variable. If f(x,y) is a function of two variables, then the mixed partial derivative is ob-
tained sequentially, first applying the x-derivative approximation, and using this as input for the y-derivative
approximation. Both x and y partial derivatives have the same truncation error order, o. With Kxi

nx;o
¼

ðnks ; nksþ1; . . . ; nk; . . . ; nkeÞ a template for the x-derivative evaluated on the qx-point stencil taken at grid point
xi and with K

yj
ny ;o ¼ ðfls ; flsþ1; . . . ; fl; . . . ; fleÞ the corresponding y-derivative template (qy-point stencil, grid

point yj) (Fig. 4), the mixed approximation template is determined by multiplying the two matrices
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Construction of a template for a function with two variables to approximate the mixed partial derivatives. The template
onding to the central difference approximation for o2f(x,y)/oxoy is illustrated. The 3-point stencils are shown for both x and y

ives. For both directions the starting and ending indexes are ks = �1 and ke = 1, respectively. The resulting template for the
approximation is a 3 · 3 matrix. The coefficients of this matrix are indicated at the grid points denoted by the solid circles.
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nks nksþ1 � � � nkeð Þ � fls flsþ1 � � � fleð Þ ¼

nksfls nksflsþ1 � � � nksfle
nksþ1fls nksþ1flsþ1 � � � nksþ1fle
� � � � � � � � � � � �
nkefls nkeflsþ1 � � � nkefle

0
BBB@

1
CCCA. ð14Þ
Thus, for two variable functions the approximation coefficients are the tensor product of coefficients for the
approximations to each one variable function. The upper left corner of the composite template corresponds
to the most negative terms and the lower right corner corresponds to the most positive terms in FD approx-
imations of the mixed partial derivatives (Fig. 4).
5. FD-CHO technique for Euler–Lagrange equation

The Euler–Lagrange equation (2) can be explicitly expressed in coordinate form as
o
2

ox2
bðx; yÞ o

2uðx; yÞ
ox2

� �
þ o

2

ox2
bðx; yÞ o

2uðx; yÞ
oy2

� �
þ o

2

oy2
bðx; yÞ o

2uðx; yÞ
ox2

� �

þ o2

oy2
bðx; yÞ o

2uðx; yÞ
oy2

� �
þ aðx; yÞuðx; yÞ ¼ 0. ð15Þ
We use the following notation for the symbols in (15):
o2uðx; yÞ
ox2

¼ oxxuðx; yÞ; ð16Þ

o2uðx; yÞ
oy2

¼ oyyuðx; yÞ; ð17Þ

hðx; yÞ ¼ bðx; yÞoxxuðx; yÞ; ð18Þ
gðx; yÞ ¼ bðx; yÞoyyuðx; yÞ ð19Þ
and write the Euler–Lagrange equation (15) as
oxxhðx; yÞ þ oxxgðx; yÞ þ oyyhðx; yÞ þ oyygðx; yÞ þ aðx; yÞuðx; yÞ ¼ 0. ð20Þ

The basic FD strategy is discretization of the computational domain in each dimension. This generates a
mesh with coordinates xi and yj, where i, j are integers. With variable spacing, distances between grid points
Dxi = xi � xi � 1 and Dyj = yj � yj � 1 can be specified. The unknown u and the coefficients a and b are
approximated as u(xi,yj) = ui, j, a(xi,yj) = ai, j and b(xi,yj) = bi, j and the variable coefficients a and b are as-
signed to nodes (i, j) prior to calculation. Known boundary values of uij are assigned to grid points of the
external boundary and each inclusion boundary. We approximate second-order derivatives at (i, j) using
centered differences with a truncation error of order o = 2; thus the starting and ending indexes are
ks = �1 and ke = 1, respectively. Higher order, more accurate FD approximations can also be formulated.
However, this significantly increases memory requirements and computational demands. The linear system
(13) determines the template coefficients for oxxu
1 1 1

�Dxi 0 Dxiþ1

ð�DxiÞ2 0 Dx2iþ1

2
64

3
75

cxii�1

cxii
cxiiþ1

2
64

3
75 ¼

0

0

2

2
64

3
75. ð21Þ
For convenience, we use the index i instead of the stencil�s index k. The superscript xi on the c coefficients
denotes the node where the derivative is evaluated and the solution to (21) is
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cxii�1 ¼ 2= DxiDxiþ1 þ Dx2i
� �

;

cxii ¼ �2=ðDxiDxiþ1Þ;
cxiiþ1 ¼ 2= DxiDxiþ1 þ Dx2iþ1

� �
.

ð22Þ
Template coefficients depend on grid spacing. From (8), oxxu is
ðoxxuÞi;j ¼ cxii�1ui�1;j þ cxii ui;j þ cxiiþ1uiþ1;j ð23Þ
and, by analogy, the FD approximation to oxxh is
ðoxxhÞi;j ¼ cxii�1bi�1;jðoxxuÞi�1;j þ cxii bi;jðoxxuÞi;j þ cxiiþ1biþ1;jðoxxuÞiþ1;j ð24Þ
using (18) for h(x,y) and the same template coefficients (22). FD approximations to (oxxu)i � 1, j and
(oxxu)i + 1, j and the required template coefficients cxi�1

k ; i� 2 6 k 6 i and cxiþ1

k ; i 6 k 6 iþ 2 are derived
from (23) and (22) by shifting the index i by «1. Substituting Eq. (23) for (oxxu)i � 1, j, (oxxu)i, j and
(oxxu)i + 1, j into (24), yields the FD approximation to (oxxh)i, j
ðoxxhÞi;j ¼ cxi�1
i�2 c

xi
i�1bi�1;j

� �
ui�2;j þ cxi�1

i�1 c
xi
i�1bi�1;j þ cxii�1c

xi
i bi;j

� �
ui�1;j

þ cxii�1c
xi�1
i bi�1;j þ cxii

� �2
bi;j þ cxiþ1

i cxiiþ1biþ1;j

h i
ui;j þ cxii c

xi
iþ1bi;j þ cxiiþ1c

xiþ1

iþ1 biþ1;j

� �
uiþ1;j

þ cxiiþ1c
xiþ1

iþ2 biþ1;j

� �
uiþ2;j. ð25Þ
With equal grid spacing (Dxi � 1 = Dxi = Dxi + 1 = Dxi + 2 = Dx) and assuming b(x,y) = 1, Eq. (25)
becomes
ðoxxhÞi;j ¼
ui�2;j � 4ui�1;j þ 6ui;j � 4uiþ1;j þ uiþ2;j

Dx4
.

Similarly (23), oyyu is approximated as
ðoyyuÞi;j ¼ c
yj
j�1ui;j�1 þ c

yj
j ui;j þ c

yj
jþ1ui;jþ1; ð26Þ
with
c
yj
j�1 ¼ 2= DyjDyjþ1 þ Dy2j

	 

;

c
yj
j ¼ �2= DyjDyjþ1

� �
;

c
yj
jþ1 ¼ 2= DyjDyjþ1 þ Dy2jþ1

	 

.

ð27Þ
By analogy to (25), the derivative of oyyg in the y-direction at yj is
ðoyygÞi;j ¼ c
yj�1

j�2 c
yj
j�1bi;j�1

h i
ui;j�2 þ c

yj�1

j�1 c
yj
j�1bi;j�1 þ c

yj
j�1c

yj
j bi;j

h i
ui;j�1

þ c
yj
j�1c

yj�1

j bi;j�1 þ c
yj
j

� �2
bi;j þ c

yjþ1

j c
yj
jþ1bi;jþ1

h i
ui;j þ c

yj
j c

yj
jþ1bi;j þ c

yj
jþ1c

yjþ1

jþ1 bi;jþ1

h i
ui;jþ1

þ c
yj
jþ1c

yjþ1

jþ2 bi;jþ1

h i
ui;jþ2. ð28Þ
The mixed derivative oxx(boyyu) in (20) can be discretized using (14). It follows from (26) that the template
for oyyu taken at grid point yj is K

yi
2;2 ¼ ðcyjj�1; c

yj
j ; c

yj
jþ1Þ. Then, from (24), the template for the x derivative at xi

is Kxi
2;2 ¼ ðcxii�1bi�1;j; c

xi
i bi;j; c

xi
iþ1biþ1;jÞ, and that for oxx(boyyu) is the tensor product (14)
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cxii�1bi�1;j cxii bi;j cxiiþ1biþ1;j

� �
� c

yj
j�1 c

yj
j c

yj
jþ1

	 

¼

cxii�1c
yj
j�1bi�1;j cxii�1c

yj
j bi�1;j cxii�1c

yj
jþ1bi�1;j

cxii c
yj
j�1bi;j cxii c

yj
j bi;j cxii c

yj
jþ1bi;j

cxiiþ1c
yj
j�1biþ1;j cxiiþ1c

yj
j biþ1;j cxiiþ1c

yj
jþ1biþ1;j

0
BB@

1
CCA:

ð29Þ

The mixed derivative oxx(boyyu) is (8)
ðoxxgÞi;j ¼ cxii�1c
yj
j�1bi�1;j

h i
ui�1;j�1 þ cxii�1c

yj
j bi�1;j

� �
ui�1;j þ cxii�1c

yj
jþ1bi�1;j

h i
ui�1;jþ1 þ cxii c

yj
j�1bi;j

h i
ui;j�1

þ cxii c
yj
j bi;j

� �
ui;j þ cxii c

yj
jþ1bi;j

h i
ui;jþ1 þ cxiiþ1c

yj
j�1biþ1;j

h i
uiþ1;j�1 þ cxiiþ1c

yj
j biþ1;j

� �
uiþ1;j

þ cxiiþ1c
yj
jþ1biþ1;j

h i
uiþ1;jþ1. ð30Þ
Finally, the mixed derivative oyy(boxxu) is determined by analogy to (29) and (30)
ðoyyhÞi;j ¼ cxii�1c
yj
j�1bi;j�1

h i
ui�1;j�1 þ cxii c

yj
j�1bi;j�1

h i
ui;j�1 þ cxiiþ1c

yj
j�1bi;j�1

h i
uiþ1;j�1 þ cxii�1c

yj
j bi;j

� �
ui�1;j

þ cxii c
yj
j bi;j

� �
ui;j þ cxiiþ1c

yj
j bi;j

� �
uiþ1;j þ cxii�1c

yj
jþ1bi;jþ1

h i
ui�1;jþ1 þ cxii c

yj
jþ1bi;jþ1

h i
ui;jþ1

þ cxiiþ1c
yj
jþ1bi;jþ1

h i
uiþ1;jþ1. ð31Þ
Substituting (25), (28), (30) and (31) in (20) yields the numerical approximation to the Euler–Lagrange
equation
ci;j�2ui;j�2 þ ci�1;j�1ui�1;j�1 þ ci;j�1ui;j�1 þ ciþ1;j�1uiþ1;j�1 þ ci�2;jui�2;j þ ci�1;jui�1;j þ ci;jui;j

þ ciþ1;juiþ1;j þ ciþ2;juiþ2;j þ ci�1;jþ1ui�1;jþ1 þ ci;jþ1ui;jþ1 þ ciþ1;jþ1uiþ1;jþ1 þ ci;jþ2ui;jþ2 ¼ 0 ð32Þ

where
ci;j�2 ¼ c
yj�1

j�2 c
yj
j�1bi;j�1;

ci�1;j�1 ¼ cxii�1c
yj
j�1 bi;j�1 þ bi�1;j

� �
;

ci;j�1 ¼ c
yj
j�1 cxii þ c

yj�1

j�1

	 

bi;j�1 þ cxii þ c

yj
j

� �
bi;j

	 

;

ciþ1;j�1 ¼ cxiiþ1c
yj
j�1 biþ1;j þ bi;j�1

� �
;

ci�2;j ¼ cxi�1
i�2 c

xi
i�1bi�1;j;

ci�1;j ¼ cxii�1 cxi�1
i�1 þ c

yj
j

	 

bi�1;j þ cxii þ c

yj
j

� �
bi;j

	 

;

ci;j ¼ cxii�1c
xi�1
i bi�1;j þ cxiþ1

i cxiiþ1biþ1;j þ c
yj
j�1c

yj�1

j bi;j�1 þ c
yjþ1

j c
yj
jþ1bi;jþ1 þ cxii þ c

yj
j

� �2
bi;j þ ai;j;

ciþ1;j ¼ cxiiþ1 cxiþ1

iþ1 þ c
yj
j

� �
biþ1;j þ cxii þ c

yj
j

� �
bi;j

� �
;

ciþ2;j ¼ cxiiþ1c
xiþ1

iþ2 biþ1;j;

ci�1;jþ1 ¼ cxii�1c
yj
jþ1 bi�1;j þ bi;jþ1

� �
;

ci;jþ1 ¼ c
yj
jþ1 cxii þ c

yjþ1

jþ1

	 

bi;jþ1 þ cxii þ c

yj
j

� �
bi;j

	 

;

ciþ1;jþ1 ¼ cxiiþ1c
yj
jþ1 bi;jþ1 þ biþ1;j

� �
;

ci;jþ2 ¼ c
yj
jþ1c

yjþ1

jþ2 bi;jþ1.

ð33Þ
Here the known ci, j are functions of the a and b coefficients and a grid spacing. For derivative approxima-
tions in the Euler–Lagrange equation (20) with a second-order truncation error, a stencil incorporates 13
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grid nodes (Fig. 5). Suppose that the grid points are numbered from 1 to nx in the x-direction and from 1 to
ny in the y-direction. The total number of grid points is n 0 = nx · ny. The grid points at the boundaries of a
computational domain are assigned values from (3). The condition (4) at the cylindrical boundary of each
inclusion is implemented as uij = u0 + sdij for the points (i, j) nearest the circumference both inside and out-
side the circle. Here, dij = rij � r0 is the distance between the point (i, j) and the circumference of the circle
and rij is the distance from that point to the center of an inclusion. As the ui, j�s on the boundary of the com-
putational domain and on the boundary of inclusions are known (solid circles in Fig. 6), the number of the
interior points, n (open circles in Fig. 6) within the computational domain where variables ui, j have to be
determined are less than n 0. The number of interior points depends on the size of the inclusions in the cluster
(Fig. 6). Interior points can be ordered as a vector
u1;1; . . . ; un1x ;1; u1;2; . . . ; un2x ;2; . . . ; u1;ny ; . . . ; unnyx ;ny

	 

;

where n ¼
Pny

j¼1n
j
x; n

j
x is the number of interior points in the x-direction for the jth row. We write the system

of n equations, corresponding to n interior points in matrix form, with the known boundary values on the
right-hand side
c11 c21 � � � cn1x1 c12 c22 � � � cn2x2 � � � c1ny c2ny � � � cnnyx ny

c11 c21 � � � cn1x1 c12 c22 � � � cn2x2 � � � c1ny c2ny � � � cnnyx ny

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
c11 c21 � � � cn1x1 c12 c22 � � � cn2x2 � � � c1ny c2ny � � � cnnyx ny

c11 c21 � � � cn1x1 c12 c22 � � � cn2x2 � � � c1ny c2ny � � � cnnyx ny

c11 c21 � � � cn1x1 c12 c22 � � � cn2x2 � � � c1ny c2ny � � � cnnyx ny

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
c11 c21 � � � cn1x1 c12 c22 � � � cn2x2 � � � c1ny c2ny � � � cnnyx ny

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
c11 c21 � � � cn1x1 c12 c22 � � � cn2x2 � � � c1ny c2ny � � � cnnyx ny

c11 c21 � � � cn1x1 c12 c22 � � � cn2x2 � � � c1ny c2ny � � � cnnyx ny

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
c11 c21 � � � cn1x1 c12 c22 � � � cn2x2 � � � c1ny c2ny � � � cnnyx ny

2
666666666666666666666666664

3
777777777777777777777777775

u11
u21
� � �
un1x1
u12
u21
� � �
un2x2
� � �
u1ny
u2ny
� � �
unnyx ny

2
666666666666666666666666664

3
777777777777777777777777775

¼

d11

d21

� � �
dn1x1

d12

d21

� � �
dn2x2

� � �
d1ny

d2ny

� � �
dn

ny
x ny

2
666666666666666666666666664

3
777777777777777777777777775

. ð34Þ
This system can be expressed compactly as C Æ U = D, where C is the known coefficient matrix, U the solu-
tion vector and D determined by the known boundary values. The linear system (34) is sparse, symmetric
and positive-definite. The coefficient matrix is n · n and each matrix row contains all n interior points. In
our membrane deformation problem the largest grid used was 640 · 640 points, with a coefficient matrix of
�1011 elements. It is a large sparse matrix with an extremely large number of zeros since only nodes lying
within the stencil have nonzero couplings. Nonzero elements for each row are found by centering the stencil
(Fig. 5) on the elements in bold in (34). Nonzero elements lie in a band along the matrix diagonal.

The key to efficiency is to store and operate with only nonzero matrix entries. Approaches to efficient
solution of linear algebraic equations (34) fall into two classes. The first involves algorithms that directly
solve the boundary value problem after a finite number of steps while the second involves an initial ‘‘guess’’
which is then improved by a finite series of iterations. Direct methods involve a form of Gaussian elimina-
tion or closely related procedures such as LU decomposition [34]. There is a large literature devoted to
sparse solvers; they have been extensively developed and are very robust, reliable and efficient for a wide
range of practical problems. They do not require an initial solution estimate and typically yield high accu-
racy solutions. For large problems, iterative methods are generally more efficient than direct methods as



Fig. 6. Schematic illustration of the computational domain with four inclusions of different radii. For illustrative purpose the grid size
is 4 Å. Interior grid points are open circles. Two layers of solid circles are the boundary points on the edge of the computational
domain and on the boundary of each inclusion.
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Fig. 5. The thirteen-point stencil demonstrating the finite difference scheme for the Euler–Lagrange equation.
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they benefit from matrix sparseness. However, these approaches often depend on special properties, such as
the matrix being symmetric positive definite, and badly conditioned systems converge slowly. In solving
(34), routines from the NAG Libraries [35], a product of the Numerical Algorithms Group Ltd., perform-
ing a sparse LU factorization were used. The NAG�s sparse matrix routines are extensions of the original
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Harwell Subroutine Library [36]. Eq. (34) was factorized using the f01brf subroutine, and this factorization
solved with the f04axf subroutine. However, this direct sparse solver was inefficient for our extremely large
sparse matrix because of computational and storage requirements. Therefore, we used it for evaluating the
solution vector, U, using a rough grid with spacing of 1–2 Å. This initial solution was used iteratively with
mesh spacings of 0.4–0.5 Å and successively improved until the desired solution accuracy was attained. Iter-
ation, done with the preconditioned biconjugate gradient method [34], had the advantage that they work
directly on the grid without needing extra storage.

Previous work showed that for one inclusion the total deformation free energy can be expressed in terms
of a linear (Hookean) spring model where bilayer material constants are combined into a single spring con-
stant [29,37]. The model was generalized to treat membrane-mediated interaction between a set of inclu-
sions [24–26]; the Hookean relationship is general, reflecting the linearity of Eqs. (2)–(4) [38]. Thus the
elastic energy (1) is a quadratic function of the boundary parameters
Fig. 7.
results
F ¼
XN
j¼1

XN
s¼j

kjsajbs; ð35Þ
where kjs are unknown effective spring constants, and the indices j and s enumerate the inclusions. The
additional summation is performed over the repeated indexes a, b; these symbolize the boundary
parameters, a,b = u, s, etc. (e.g. the parameter accounting for azimuthal variation of the slope [25]).
The coefficients kjs are independent of both u and s (kjj corresponds to elastic ‘‘self-energy’’ due to
deformation of the membrane surrounding the jth inclusion; kjs describes coupling between inclusions
j and s propagated via membrane deformation).To demonstrate this CHO approach, consider seven
inclusions forming a regular, centered, symmetric hexagon with ‘‘null constraint’’ boundary condition
sj = 0 for all inclusions (Fig.7). For any inclusion geometry, the elastic free energy (35) is a quadratic
Cluster of seven inclusions, with one at the center and six at the vertices of a regular hexagon. The fine mesh spacing with 0.4 Å
in a black-colored computational domain.
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function of the boundary displacements uj. The number of independent spring constants in (35) is six,
k11, k12, k13, k14, k77 and k17 (with 7 enumerating the central inclusion). To find effective elastic con-
stants for a particular inclusion configuration (Fig.7), the elastic problem (2) with the boundary condi-
tions (3) and (4) must be solved numerically for six linearly independent sets of uj. The six spring
constants, kjs, are determined by substituting the six energies calculated from (1) on the left-hand side
of (35). The same FD-CHO procedure is used to determine elastic constants for different cluster geom-
etries (maintaining cluster symmetry). With these constants in hand, (35) analytically determines elastic
energies.The FD-CHO approach dramatically reduces computational complexity, as it requires direct
numerical solution of the boundary value problem (1)–(4) for a limited set of displacement fluctuations
uj at each inter-inclusion separation.
6. FD approximation to heat and magnetic field diffusion equations

FD methods start by discretizing space and time so that there are a specified number of points in the
space domain and a specified number of time levels at which the redistributions of the temperature and
magnetic field due to diffusion are calculated. We use a grid of gradually varying cell size by imposing un-
equal grid spacings Dri = ri + 1/2 � ri � 1/2 and Dzj = zi + 1/2 � zi � 1/2 in the r and z directions, respectively.
The subscripts i + 1/2 and j + 1/2 refer to quantities defined on the cell interfaces ri + 1/2 and zj + 1/2. Cell
centers ri = (ri � 1/2 + ri + 1/2)/2 and zj = (zi � 1/2 + zi + 1/2)/2 are specified at positions (i, j). We use standard
notation for evaluating functions T n

i;j and Bn
i;j defined at cell centers (i, j) and time level n. We assume time

spacings tn with intervals Dtn = tn + 1 � tn. Given a grid, we use finite differencing (13) to approximate sec-
ond-order spatial derivatives in (6) and (7) at our grid points. We approximate the spatial derivatives at
each point (i, j) using centered differences with truncation error of order o = 2.

The spatial derivative of temperature in the r-direction at ri can be approximated as (8)
1

r
o

or
rK

oT
or

� �� �
i;j

¼ crii�1;jT
nþ1
i�1;j þ crii;jT

nþ1
i;j þ criiþ1;jT

nþ1
iþ1;j; ð36Þ
where
crii�1;j ¼
2Ki�1=2;jri�1=2

riDriðDri�1 þ DriÞ
; criiþ1;j ¼

2Kiþ1=2;jriþ1=2

riDriðDriþ1 þ DriÞ
;

crii;j ¼ � 2Kiþ1=2;jriþ1=2ðDri�1 þ DriÞ þ 2Ki�1=2;jri�1=2ðDriþ1 þ DriÞ
riDriðDri�1 þ DriÞðDriþ1 þ DriÞ

.

The terms Ki � 1/2, j and Ki + 1/2, j on the cell interfaces are determined from values at the grid points, by
linear interpolation between adjacent grid points
Kiþ1=2;j ¼
DriKiþ1;j þ Driþ1Ki;j

Driþ1 þ Dri
.

The FD approximation (36) is formulated with the unknown temperatures, Tn + 1, at the new time level,
tn + 1, in order to use large time steps constrained by the physics, not the numerics. If, instead, we use
Tn (the explicit scheme), the maximum allowable time step is severely limited to Dt < min(Dr2,Dz2)/(2K),
the diffusion time across a cell. The number of time steps required for evolution across characteristic spatial
scales are prohibitively large. The spatial temperature derivative in the z-direction at zj is (8)
o

oz
K
oT
oz

� �� �
i;j

¼ czji;j�1T
nþ1
i;j�1 þ czji;jT

nþ1
i;j þ czji;jþ1T

nþ1
i;jþ1; ð37Þ
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where
czji;j�1 ¼
2Ki;j�1=2

DzjðDzj�1 þ DzjÞ
; czji;jþ1 ¼

2Ki;jþ1=2

DzjðDzjþ1 þ DzjÞ
;

czji;j ¼ � 2Ki;jþ1=2ðDzj�1 þ DzjÞ þ 2Ki;j�1=2ðDzjþ1 þ DzjÞ
DzjðDzj�1 þ DzjÞ Dzjþ1 þ Dzj

� � .
Given an implicit FD discretization of the diffusion term in (6) we still must approximate the time deriva-
tive. Using a forward time step the FD approximation to the time derivative in (6) is
oqcpT
ot

� �
i;j

¼
qn
i;j cp
� �n

i;j
T nþ1

i;j � qn
i;j cp
� �n

i;j
T n

i;j

Dtn
. ð38Þ
Plasma properties such as density and heat capacity are assumed constant during each time step. Substitut-
ing (36)–(38) into (6) and rearranging gives us the discretized FD form for heat diffusion
ci�1;jT nþ1
i�1;j þ ci;j�1T nþ1

i;j�1 þ ci;jT nþ1
i;j þ ciþ1;jT nþ1

iþ1;j þ ci;jþ1T nþ1
i;jþ1 ¼ di;j; ð39Þ
where the resulting coefficients
ci�1;j ¼ crii�1;j; ci;j�1 ¼ czji;j�1; ciþ1;j ¼ criiþ1;j; ci;jþ1 ¼ czji;jþ1; ci;j ¼ crii;j þ czji;j �
qn
i;j cp
� �n

i;j

Dtn
;

di;j ¼ �
qn
i;j cp
� �n

i;j
T n

i;j

Dtn
ð40Þ
are expressed in terms of grid spacing, thermal conductivity, heat capacity, density and temperature of the
plasma at the previous time level. Similar to (6), we generalize this fully implicit scheme to describe the dif-
fusion equation for the magnetic field (7). Its FD approximation is
ci�1;jBnþ1
i�1;j þ ci;j�1Bnþ1

i;j�1 þ ci;jBnþ1
i;j þ ciþ1;jBnþ1

iþ1;j þ ci;jþ1Bnþ1
i;jþ1 ¼ di;j; ð41Þ
where the known coefficients ci, j and di, j are functions of grid spacing, magnetic diffusivity and magnetic
field at the previous time level. The spatial derivative of the magnetic field in the r-direction in Eq. (7) differs
from that in Eq. (6 ). It becomes singular at r = 0. The template coefficients for the r-derivative in (7) has the
form
crii�1;j ¼
2gi�1=2;jri�1

ri�1=2DriðDri�1 þ DriÞ
; criiþ1;j ¼

2giþ1=2;jriþ1

riþ1=2DriðDriþ1 þ DriÞ
;

crii;j ¼ �
2giþ1=2;jri

riþ1=2DriðDriþ1 þ DriÞ
þ

2gi�1=2;jri
ri�1=2DriðDri�1 þ DriÞ

� �
.

For the first cell (at r = 0) the coefficients are
cri0;j ¼ 0; cri2;j ¼
2g3=2;jr2

r3=2Dr1 Dr2 þ Dr1ð Þ ;

cri1;j ¼ �
2g3=2;jr1

r3=2Dr1 Dr2 þ Dr1ð Þ þ
4g1=2;j
Dr21

� �
.

The template coefficients for the z-derivative in (7) have the same form as those in (37). For the given initial
and boundary conditions (see Section 3) at each time step the systems of algebraic equations (39) and (41)
are solved for all nodes (i, j) to find the T nþ1

i;j and Bnþ1
i;j at the next time step. This contrasts with explicit time

discretization where temperature and magnetic field at the next time step are found without solving an
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algebraic system. The advantage of the implicit method is that it is unconditionally stable, requiring no sta-
bility condition on the time step. However, for accuracy, the equations must be advanced by time steps one
or two orders of magnitude less than the physical time scale. A characteristic feature of the fully implicit
method is that details of small-scale evolution of temperature and magnetic field from their initial condi-
tions are smeared out on the large implicit time steps. However, the correct steady-state solution is ob-
tained. For an enormous time step Dt ! 1, di,j ! 0 in (40). The implicit method actually solves the
steady state 2D heat and magnetic field problems at each time step.

Implicit schemes require solving a set of simultaneous linear equations for T nþ1
i;j and Bnþ1

i;j at each time
step. Eqs. (39) and (41) are expressed in matrix form (Section 5) as Ax = b, where A is the pentadiagonal
coefficient matrix with two outer diagonals widely separated from three inner diagonals, x corresponds to
the array of temperature or magnetic field values at time step n + 1 and b are known values at time n. Val-
ues of temperature or magnetic field from all boundaries in the computational domain determine the right-
hand side vector (i.e. b) and direct sparse solvers, as described in Section 5, solve the linear algebraic system.
Matrix coefficients and the vector b (boundary conditions) are updated after each time step.
7. Results

7.1. Membrane-mediated interactions in protein aggregates

The PAMEMD1 (Protein Aggregation Mediated by Elastic Membrane Deformations) code based on the
FD-CHO algorithm was developed in Fortran-95 programming language. It determines numerical solu-
tions of the Euler–Lagrange equation (15) in 2D Cartesian coordinates for arbitrarily configured inclusion
clusters and the effective spring constants needed in (35) to analytically determine elastic deformation free
energies. We first tested the method for one cylindrical inclusion embedded in a glycerol monooleate
(GMO) membrane, where the problem can be solved analytically [7]. Exact membrane deformation profiles
for slopes s = 0 and s = �0.45 (smin for GMO) are compared in Fig. 8(a) with numerical results. A grid
spacing of 0.5 Å (near our limiting computational capability) accurately reproduces analytical results
(Fig. 8(a)). However, the deformation free energy is very sensitive to the choice of grid spacing as illustrated
in Fig. 8(b), comparing profiles as a function of the contact slope. Numerical calculations, carried out at
three grid spacings (0.2, 0.5 and 1 Å) equal in both x and y directions, show that regardless of mesh size,
numerical and analytical results agree especially well (to within 2%) for the physically most interesting slope
ranges (�0.5 to 0). The error is greater for large negative slopes, reaching �20% for s = �1 and a 0.5 Å
mesh. For such unphysical slopes the distortion surface is very steep; it drops abruptly near the inclusion,
in which case the deformation surface displays pronounced non-monotonic behavior with a deep well near
the inclusion and a pronounced peak �20–30 Å away from the inclusion [7]. In that region (�20–30 Å)
membrane thickness exceeds the unperturbed value h0. Clearly, for large negative slopes a fine grid spacing
is needed to reproduce complex distortion surface behavior. Two main error sources contribute to the en-
ergy integral. First, the distortion surface is calculated at a limited number of points; u(x,y) defined on a
mesh is approximate and its precision grid size-dependent. The bending energy (1), determined by the sec-
ond derivatives of u, is especially sensitive. Second, we approximate inclusion boundaries by zigzag strips of
grid points (Fig. 6). In this region, surface distortion is maximal and its variation greatest; thus changing
boundary shape may introduce further error. Both errors decrease with grid refinement. The numerical
scheme (32,33) with truncation error o = 2 is theoretically expected to be globally second-order accurate.
1 The PAMEMD code and program manual are freely available to download from http://people.brandeis.edu/~gennady/
pamemd.html.

http://people.brandeis.edu/~gennady/pamemd.html
http://people.brandeis.edu/~gennady/pamemd.html
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However, the aforementioned factors (boundary conditions and grid spacing) affect the global order. To
specifically demonstrate the convergence properties of our numerical solution, we define the error at each
grid point (i, j) as the norm of the difference between numerical and analytic solutions
Deij ¼ juhij � uaijj;
where uaij is the analytic solution and uhij is the numerical result for a prescribed isotropic grid spacing h. The
global error is then found by averaging norms
e ¼ 1

N

X
i;j

Deij;
N is the number of grid points at which the Deij are evaluated. To estimate the order of the numerical
scheme, we solved the problem of one cylindrical inclusion analytically [7] and on grids of increasing res-
olution. The dependence of the global error on grid resolution is illustrated in Fig. 8(c) for slopes s = 0 and
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s = �0.45, where the convergence order o is the slope of the curve of log(e) versus log(h). Steeper slopes
indicate faster convergence. As seen from Fig. 8(c), o is approximately 1.64 for s = 0 and 1.82 for
s = �0.45, respectively. Global convergence is affected by the boundary condition (slope of s) on the inclu-
sion boundary. It is known that the order of accuracy of the boundary conditions can be one order lower
than the local truncation error of an FD scheme without reducing overall global accuracy. However, the
global accuracy order can be, in general, one degree lower than the local discretization order at one stencil
due to error propagation from other stencils. This limiting factor probably accounts for the global conver-
gence order being less than 2.

We use the FD-CHO method to study: (i) stabilization of the gA ion channel [39] due to membrane-
mediated interactions between gA channels in a cluster [24] and (ii) to examine the effects of anisotropic mem-
brane slope relaxation on the channel interaction energy [25]. Here, we briefly highlight our major results.
In [24], we considered representative clusters, explicitly accounting for possible fluctuations of the hydro-
phobic length of a selected channel in the cluster, emphasizing how neighboring channels influence its sta-
bility. Clustering, which affects length fluctuations of the selected gA channel, can increase gA lifetimes by
orders of magnitude, an effect that is more pronounced for a channel with many near neighbors. In clusters,
gA channels are better adjusted to the collectively deformed membrane than the isolated channel was to the
original membrane; by thinning the membrane immediately surrounding a selected channel, its neighbors
decrease the elastic force tending to separate gA monomers (the channel is a dimer), thus stabilizing the
channel. Recent experimental observation of significant stabilization of so-called ‘‘double-barreled’’ and
‘‘tandem’’ gA channels (up to 100-fold increases in channel lifetimes) [40,41] can be reasonably ascribed
to membrane-mediated elastic interactions. A similar experimental study [42] confirms that formation of
tandem channels is strongly favored in thicker and stiffer membranes. In a tandem channel, the number
of inter-channel hydrogen bonds is doubled. Our theoretical analysis [24] interprets this as reflecting the
weaker elastic influence of the collectively deformed membrane on the tandem channel as compared to that
on two single channels. In [25], we analyzed the complex boundary conditions that permit anisotropic relax-
ation of the contact slope along inclusion contours. We found that anisotropic angular variation of the con-
tact slope crucially affects the interaction energy, leading to a short-range attraction between two
inclusions, while conventional isotropic boundary conditions result in their strong repulsion. In a multi-
inclusion cluster, this attraction is further enhanced due to non-pairwise interactions, a result valid regardless
of whether the membrane is treated as uniform or non-uniform [26]. In addition, the non-uniform approach
[26], assuming local perturbation of membrane elastic moduli in the vicinity of the inclusion and a contact
slope determined by energy minimization (s = smin), yields results qualitatively identical to that from the
(uniform) conventional model based on the ‘‘null constraint’’ for the contact slope (s = 0).

We showed that the FD-CHO algorithm is a practicable way to treat membrane-mediated interactions
between inclusions in aggregates. Our approach can be extended in numerous ways, including consideration
of non-cylindrical inclusions, incorporation of specific molecular degrees of freedom such as acyl chain tilt
and stretching, accounting for spontaneous monolayer curvature and treating systems assembled from sub-
units. The treatment of non-uniformity [25] was only preliminary as we used a trial function approach to
describe the angular dependence of the contact slope for interacting inclusions and assumed the influence of
inclusions on elastic moduli is additive. Further development is needed to consistently describe membrane
relaxation in contact with inclusions and for self-consistent treatment of the combined influence of inclu-
sions on membrane elastic constants. In particular, the description of the spatial variation of inter-inclusion
elastic moduli should satisfy a free energy minimization principle.

7.2. Heat and magnetic field diffusion in plasmas

Validity of the fully implicit scheme for the heat diffusion equation (39) has been established by solving
one-dimensional test cases. Numerical results are compared with those from analytical solution [43].
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Case 1. This one-dimensional problem treats the temperature front moving along the z-axis in a semi-
infinite slab. The heat capacity and density of slab is taken to be unity and the thermal conductivity is a
power function of temperature K = K0T

a. The heat conduction equation (6) reduces to
Fig. 9.
the z-a
t = 0.1
to the
grid is
oT
ot

¼ o

oz
K0T a oT

oz
for z > 0; t > 0. ð42Þ
The slab temperature is initially T = 0, and at t > 0 a semi-infinite slab is exposed to the initial and bound-
ary conditions
T ð0; tÞ ¼ aD
K0

ðz1 þ DtÞ
� �1=a

; t > 0;

T ðz; 0Þ ¼
aD
K0
ðz1 � zÞ

h i1=a
; 0 < z 6 z1;

0; z > z1;

8<
:

with the parameter set a = 2, K0 = 0.5, z1 = 0, D = 5. Samarskii and Popov [43] solved this problem ana-
lytically where the resulting temperature front propagates through a cold medium with the speed D
T ðz; tÞ ¼
aD
K0

Dt þ z1 � zð Þ
h i1=a

; 0 < z 6 ðz1 þ DtÞ;
0; z > ðz1 þ DtÞ.

8<
:

Test calculations were performed utilizing uniform and essentially non-uniform grids. Fig. 9(a) illustrates
the temperature profiles along the slab at time t = 0.1 for a variety of time step sizes on a uniform grid
with Dz = 10�2. Here, numerical results (open symbols) are compared with the analytical solution (solid
curve) of Samarskii and Popov [43]. The temperature front is sharp and the speed of the thermal wave is
constant due to the nonlinear thermal conductivity. The results of the fully implicit scheme agree well
with the exact solution for a wide range of time steps. For time steps Dt 6 10�4, the implicit numerical
method and the analytical results are in full agreement. The problem (42) was also solved with the For-
ward Time Centered Space (FTCS) scheme [44,45]. Euler�s FTCS method is the simplest way to explicitly
solve initial value problems. Explicit time steps were limited to Dt 6 10�6; larger time steps led to sub-
stantial spurious oscillations. Thus, there was a two orders of magnitude difference between implicit
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and explicit time steps. The fully implicit algorithm (39) is also numerically stable on essentially non-uni-
form grids. Propagation of the temperature front along the slab with a non-uniform grid is illustrated in
Fig. 9(b). Here results of the implicit method at t = 0.1 and t = 0.15 are compared with analytical results
[43] and calculations performed with time step Dt = 10�4. The implicit method agrees beautifully with the
analytical solution.

A common question in numerical solutions is estimating the order of the global error term. Here, our
focus is on how the global error depends on grid spacing for various fixed times. In order to investigate
the method�s spatial order with increasing refinement of the grid, we consider a 2D cylindrical test case.
A cylinder 0.5 cm in diameter and 1 cm in height is heated uniformly on one end as shown in Fig. 10(a).
The normal derivative of temperature is zero on all other boundary surfaces. The temperature front
moves along the cylinder and for each z the temperature is constant in the r-direction. The resulting
analytic solution is the same as that for a semi-infinite slab. In this example, an estimate of o, the order
of the method, is computed as described in the previous section. The global error was calculated at the
times 10�2, 3 · 10�2 and 5 · 10�2 s for grid spacings of 0.005, 0.01 and 0.02 cm. The evolution of the
global error as a function of the mesh size is plotted in Fig. 10(b) where the convergence order is about
1.48.

Case 2. Here, we consider the evolution of a ‘‘stopped’’ thermal wave in one-dimension. Such a temper-
ature wave is a solution of (42) with the following initial and boundary conditions:
Fig. 1
depend
T ð0; tÞ ¼ az1
2K0ðaþ 2ÞðC � tÞ

� �1=a
; 0 < t < C:

T ðz; 0Þ ¼
aðz1�zÞ2

2K0ðaþ2ÞC

h i1=a
; 0 < z 6 z1;

0; z > z1.

8<
:

This problem also has an analytical solution [43] and the temperature front evolves as
T z; tð Þ ¼
aðz1�zÞ2

2K0ðaþ2ÞðC�tÞ

h i1=a
; 0 < z 6 z1;

0; z > z1.

8<
:

0. The two-dimensional problem of: (a) the temperature front propagating along the heat-isolated cylinder and (b) the
ence of the global error on mesh size at three fixed times. The global convergence order is about 1.48.
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Fig. 11 shows temperature profiles along the slab at times t = 0.1, t = 0.105 and t = 0.112. At t > 0, the
left wall temperature is increased. The temperature remains zero in the region z > z1 in spite of instanta-
neous heat release on the left boundary. Test calculations were performed with a uniform spatial grid of
Dz = 10�2 and time step Dt = 10�4 using the parameters set a = 2, K0 = 0.5, z1 = 0.5, C = 0.1125.
Fig. 11 shows excellent agreement between numerical and analytical results [43].

These simple test cases demonstrate the stability and accuracy of the fully implicit method (39) in a cold
medium. However, we want to validate the fully implicit scheme for practical applications to real plasma
devices. Therefore, we modeled the physical processes of heat and magnetic field diffusion in the DPF
device [46,47]. It is noteworthy that the DPF pinch discharge has practical implications, as a light source
for extreme ultraviolet (EUV) lithography, a promising new technology for producing microchips. EUV
lithography based on a xenon pinch plasma requires high radiation intensities at shorter wavelengths,
�13.5 nm, thus enabling high resolution printing of smaller circuit features. The power requirement for
EUV lithography (�115 W) obliges source developers to have a better understanding of plasma behavior
in real plasma devices, especially near the electrodes [48]. Realistically describing plasma behavior entails
developing theoretical approaches that account for heat and magnetic field diffusion [32,49–51]. Heat
and magnetic field redistribution was studied in two ways. First, we explicitly treated heat and magnetic
field diffusion within the whole MHD system (5) solved by the Total Variation Diminishing method in
Lax–Friedrich formulation [52]. Second, these physical processes were decoupled from (5) using the split-
ting algorithm and treated independently on the basis of the fully implicit scheme. The two modeling tech-
niques agree well. We compare the explicit and implicit approaches for a discharge plasma device, showing
that the implicit scheme gives results comparable to the explicit approach while permitting time steps 100
times those of the explicit method. Fig. 12 plots temperature and magnetic field isolines around the device
electrode at t = 200 ns after the discharge started. An electric current flowing through an external circuit
generates a magnetic field. The thermal sources of energy in the plasma are Joule heating and efficient
plasma compression by the magnetic field. The temperature distribution is highly non-uniform with the
region near the electrodes a hot spot of �15 eV (see Fig. 12(a)). Higher temperatures near electrodes reflect
current spreading in the inter-electrode space. Heat diffusion to the plasma periphery lowers the tempera-
ture in this hot region. A region of magnetic field diffusion near the electrode, shown in Fig. 12(b), is also
where the current density is greatest. The magnetic field evolves due to resistive diffusion and convection. A
diffuse volume of magnetized plasma forms near the electrodes (Fig. 12(b)). The magnitude of the magnetic
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Fig. 12. Isolines of (a) temperature and (b) magnetic field around electrode at time 200 ns. In (a) the contour labels refer to
temperature in eV. In (b) they refer to the magnetic field in kG.
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field drops 7-fold at the edge of the plasma region. Radial profiles of temperature and magnetic field deter-
mined by the explicit and implicit approaches at the monitor point z = 1.5 cm are compared in Fig. 13. The
calculations were performed with Dt = 5 ps and Dt = 5 · 10�2 ps for the implicit and explicit methods,
respectively. While providing accuracy similar to the explicit method, the independent implicit scheme
has a number of advantages compared with methods directly incorporated into the MHD system (5).
The most crucial feature is the use of large time steps. In calculations of heat transfer through rarefied plas-
mas, the explicit method is highly unstable. The size of time step is greatly restricted due to heat transfer in
areas of low plasma density, typically the area behind the magnetic ‘‘snowplow.’’ This can be physically
understood as reflecting the collisional mechanism of thermal conductivity. If energy exchange between
computational cells occurs in one time step, then the explicit scheme performs well. However, the decrease
of the plasma density and time step severely limits energy exchange. The explicit scheme cannot account for
collisional heat transfer beyond neighbor cells so that heat transfer is limited by numerics, not by the phys-
ics. A similar situation arises in magnetic field diffusion near a zero point at the plasma compression on the
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radial axis [53] where an additional procedure is needed to damp non-physical oscillations arising in the
explicit method.
8. Conclusions

Our objective was to develop a simple and consistent approach to solving boundary value and initial
value problems encountered in the fields of physics and biophysics. We explored an FD approach for solv-
ing cross-disciplinary problems such as membrane-mediated protein–protein interactions and heat and
magnetic field diffusion in plasmas. Both cases exhibit inclusions (proteins or electrodes) within the compu-
tational domain. Boundary conditions are formulated on the external boundary of the computational do-
main and on each inclusion boundary. Although the physics of the problems and the corresponding
mathematical models are mutually incompatible, FD discretization of the equations describing the phe-
nomena lead to similar systems of linear algebraic equations with a sparse matrix. The FD approach is sim-
ple, consistent, stable and convergent.

We showed that many-body elastic interactions between proteins in membranes can be efficiently treated
using the FD-CHO approach. This allows treatment of arbitrary finite-size aggregates of inclusions auto-
matically accounting for non-pairwise interactions. The elastic problem (1)–(4) must be solved numerically
for just a few sets of boundary parameters to determine the associated effective elastic constants. With these
spring constants defined, the elastic free energy of all possible fluctuations in interfacial inclusion displace-
ments and inter-inclusion separations in the regular cluster can be calculated analytically.

Results of two test cases in a cold medium and simulations of heat and magnetic field diffusion in a plasma
are presented to confirm the accuracy and stability of the fully implicit scheme. The fully implicit scheme
yields results comparable to the explicit method while permitting time steps 100 times larger. Using the im-
plicit scheme, we simulated heat and magnetic field diffusion in discharge-produced plasma devices [54].
The fully implicit scheme was fully stable, even in combination with other processes in the plasma such
as radiation transfer, thermomagnetic source, laser beam interactions.
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